Exercises for Stochastic Processes

Tutorial exercises:

Let B be a standard Brownian motion and (\mathcal{F}_t) the usual right continuous filtration.

T1. Show that

and

are martingales.

T2. Show that Gaussian processes $(X_t)_{t\geq 0}$ that are martingales have independent increments.

 $M_t := B_t$

 $N_t := B_t^2 - t$

T3. Show that, for any square-integrable martingale (M_t) and r < s < t,

$$\mathbb{E}\left[(M_t - M_s)^2 \mid \mathcal{F}_r\right] = \mathbb{E}\left[M_t^2 - M_s^2 \mid \mathcal{F}_r\right].$$

T4. For -a < 0 < b we define

$$\tau := \inf \{ t \ge 0 \mid B_t \in \{-a, b\} \}$$

- . Show that $\mathbb{P}(B_{\tau} = b) = \frac{a}{a+b}$ and $\mathbb{E}(\tau) = ab$.
- T5. Let $v \leq u \leq w$. Show that there is a unique probability distribution \mathbb{P} on \mathbb{R} , such that $\mathbb{P}(\{v, w\}) = 1$ and the distribution has mean u:

$$\int x \,\mathbb{P}(dx) = u.$$

 \rightarrow Page 2

Homework exercises:

Let B be a standard Brownian motion and (\mathcal{F}_t) the usual right continuous filtration.

H1. (a) Show that, for any $\sigma \geq 0$, the process

$$\left(e^{\sigma B_t - \frac{\sigma^2 t}{2}}\right)_{t \ge 0}$$

is a martingale.

- (b) Show that the following processes are martingales:
 - $(B_t^2 t)$
 - $(B_t^3 3tB_t)$
 - $(B_t^4 6tB_t^2 + 3t^2)$
 - . . .

and find the general formula for the above sequence.

(Hint: use (a))

H2. For a, b > 0, we define $\tau := \inf\{t \ge 0 \mid B_t = a + bt\}$. Show that $\mathbb{P}(\tau < \infty) = e^{-2ab}$. (Hint: First show using H1(a) that

$$\mathbb{E}[e^{-\lambda\tau}\mathbb{1}_{\{\tau<\infty\}}] = \exp\left(-a\left(b+\sqrt{b^2+2\lambda}\right)\right),$$

for all $\lambda > 0$.)

H3. Compute $\mathbb{E}(\tau^2)$ for $\tau := \inf \{t \ge 0 \mid B(t) \in \{-a, b\}\}$ and -a < 0 < b.

Deadline: Monday, 18.11.19